Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725284

RESUMEN

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Pronóstico , Estrés del Retículo Endoplásmico/genética , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Biología Computacional/métodos , Bases de Datos Genéticas , Curva ROC , Estimación de Kaplan-Meier , Transcriptoma
2.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656254

RESUMEN

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Serina/biosíntesis , Transducción de Señal
3.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561354

RESUMEN

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Humanos , Carcinoma de Células Renales/metabolismo , Gotas Lipídicas/metabolismo , Estrés del Retículo Endoplásmico/genética , Neoplasias Renales/metabolismo , Lípidos , Proteínas Represoras/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650127

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas , Movimiento Celular , Núcleo Celular , Proliferación Celular , Proteínas Homeobox A10 , Proteínas de Homeodominio , Neoplasias de la Boca , alfa Carioferinas , eIF-2 Quinasa , Humanos , Autofagia/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Movimiento Celular/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Núcleo Celular/metabolismo , Ratones , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Transducción de Señal , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Ratones Endogámicos BALB C , Femenino , Invasividad Neoplásica
5.
J Transl Med ; 22(1): 393, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685045

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS: Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS: A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS: We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.


Asunto(s)
Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Metabolismo de los Lípidos , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análisis de la Célula Individual , Transcriptoma , Humanos , Estrés del Retículo Endoplásmico/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Transcriptoma/genética , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Perfilación de la Expresión Génica , Reproducibilidad de los Resultados , Estudios de Cohortes
6.
Mol Med ; 30(1): 40, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509524

RESUMEN

The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Transducción de Señal , Neoplasias/terapia
7.
PeerJ ; 12: e17070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549776

RESUMEN

Background: Endometriosis is one of the most common benign gynecological diseases and is characterized by chronic pain and infertility. Endoplasmic reticulum (ER) stress is a cellular adaptive response that plays a pivotal role in many cellular processes, including malignant transformation. However, whether ER stress is involved in endometriosis remains largely unknown. Here, we aimed to explore the potential role of ER stress in endometriosis, as well as its diagnostic value. Methods: We retrieved data from the Gene Expression Omnibus (GEO) database. Data from the GSE7305 and GSE23339 datasets were integrated into a merged dataset as the training cohort. Differentially expressed ER stress-related genes (DEG-ERs) were identified by integrating ER stress-related gene profiles downloaded from the GeneCards database with differentially expressed genes (DEGs) in the training cohort. Next, an ER stress-related gene signature was identified using LASSO regression analysis. The receiver operating characteristic curve was used to evaluate the discriminatory ability of the constructed model, which was further validated in the GSE51981 and GSE105764 datasets. Online databases were used to explore the possible regulatory mechanisms of the genes in the signature. Meanwhile, the CIBERSORT algorithm and Pearson correlation test were applied to analyze the association between the gene signature and immune infiltration. Finally, expression levels of the signature genes were further detected in clinical specimens using qRT-PCR and validated in the Turku endometriosis database. Results: In total, 48 DEG-ERs were identified in the training cohort. Based on LASSO regression analysis, an eight-gene-based ER stress-related gene signature was constructed. This signature exhibited excellent diagnostic value in predicting endometriosis. Further analysis indicated that this signature was associated with a compromised ER stress state. In total, 12 miRNAs and 23 lncRNAs were identified that potentially regulate the expression of ESR1, PTGIS, HMOX1, and RSAD2. In addition, the ER stress-related gene signature indicated an immunosuppressive state in endometriosis. Finally, all eight genes showed consistent expression trends in both clinical samples and the Turku database compared with the training dataset. Conclusions: Our work not only provides new insights into the impact of ER stress in endometriosis but also provides a novel biomarker with high clinical value.


Asunto(s)
Dolor Crónico , Endometriosis , MicroARNs , Femenino , Humanos , Endometriosis/diagnóstico , Estrés del Retículo Endoplásmico/genética , Algoritmos
8.
Mol Biol Rep ; 51(1): 435, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520543

RESUMEN

BACKGROUND: XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure. METHODS: In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins. RESULTS: It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance. CONCLUSION: In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Estrés del Retículo Endoplásmico/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo
9.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481808

RESUMEN

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Asunto(s)
Antineoplásicos , Daño por Reperfusión , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
Artículo en Chino | MEDLINE | ID: mdl-38311942

RESUMEN

Objective: To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells. Methods: In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 µg/ml Cd, 100 µg/ml CBNPs, 100 µg/ml CBNPs+2 µg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results: There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined (P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group (P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression (P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group (P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group (P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene (P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 (P<0.05), but the interaction between the two chemicals had no statistical significance (P>0.05) . Conclusion: CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.


Asunto(s)
Cadmio , Hollín , Humanos , Cadmio/toxicidad , Hollín/toxicidad , Interleucina-8 , Interleucina-6 , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/farmacología , Autofagia , Células Epiteliales/metabolismo , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Inflamación
11.
Cell Signal ; 116: 111058, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244711

RESUMEN

Cutaneous melanoma is one of the most malignant human tumors and possesses strong resistance to radiotherapy. However, the mechanisms contribute to such radioresistance of melanoma is unclear. In this study, SIRT7 is identified to be higher-expressed in melanoma and positively correlated with melanoma staging. Under ionizing radiation (IR)-treatment condition, loss of SIRT7 compromised the survivability of melanoma cells showed by decreased proliferation, colony formation, migration, but enhancing apoptosis. Transcriptomic sequencing analysis indicated the apoptosis induced after SIRT7 knockdown is tightly related with the induction of endoplasmic reticulum stress (ER stress) by IR treatment. Loss of SIRT7 enhanced EIF2α acetylation and activated its phosphorylation to induce the expression of ER stress proteins including DDIT3, XBP1 and GRP78, among which DDIT3 is responsible for apoptosis induction. SIRT7 depletion enriched ER stress-activated transcription factor ATF4 at the promoter region of DDIT3 gene to transactivate its expression and induces apoptotic cascade in both mock- and IR-treatment conditions. Consistently, SIRT7 is highly upregulated in radioresistant melanoma cell strain and still modulates the ER-stress responsive genes to maintain the homeostasis of melanoma. Collectively, SIRT7 negatively regulates ER stress-activated apoptosis to enhance the survivability of melanoma cells in both non-IR- and IR-treatment conditions. Our study highlights the role of SIRT7 in repressing ER stress and the following apoptosis to sustain tumor development and mediate radioresistance in melanoma, which may suggest a novel intervention target for melanoma therapy.


Asunto(s)
Melanoma , Sirtuinas , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/radioterapia , Melanoma/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/radioterapia , Apoptosis , Estrés del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico , Sirtuinas/genética
12.
Cell Biol Int ; 48(4): 483-495, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238919

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown pathogenic origin. Endoplasmic reticulum (ER) stress refers to the process by which cells take measures to ER function when the morphology and function of the reticulum are changed. Recent studies have demonstrated that the ER was involved in the evolution and progression of IPF. In this study, we obtained transcriptome data and relevant clinical information from the Gene Expression Omnibus database and conducted bioinformatics analysis. Among the 544 ER stress-related genes (ERSRGs), 78 were identified as differentially expressed genes (DEGs). These DEGs were primarily enriched in response to ER stress, protein binding, and protein processing. Two genes (HTRA2 and KTN1) were included for constructing an accurate molecular signature. The overall survival of patients was remarkably worse in the high-risk group than in the low-risk group. We further analyzed the difference in immune cells between high-risk and low-risk groups. M0 and M2 macrophages were significantly increased in the high-risk group. Our results suggested that ERSRGs might play a critical role in the development of IPF by regulating the immune microenvironment in the lungs, which provide new insights on predicting the prognosis of patients with IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Estrés del Retículo Endoplásmico/genética , Pulmón/patología , Proteínas de la Membrana
13.
Mol Cancer Res ; 22(4): 360-372, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236939

RESUMEN

Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS: PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.


Asunto(s)
MicroARNs , Neoplasias , Canales Catiónicos TRPM , Humanos , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/fisiología , Neoplasias/genética , Microambiente Tumoral , Canales Catiónicos TRPM/genética
14.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272235

RESUMEN

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Genes Supresores de Tumor , Ubiquitina-Proteína Ligasas , Ubiquitinación , Regulación hacia Arriba , Humanos , Células A549 , Proliferación Celular/genética , AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Ubiquitinación/genética , Regulación hacia Arriba/genética , Movimiento Celular/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Exp Mol Med ; 56(1): 235-249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253797

RESUMEN

Cytochrome b5 reductase 3 (CYB5R3) is involved in various cellular metabolic processes, including fatty acid synthesis and drug metabolism. However, the role of CYB5R3 in cancer development remains poorly understood. Here, we show that CYB5R3 expression is downregulated in human lung cancer cell lines and tissues. Adenoviral overexpression of CYB5R3 suppresses lung cancer cell growth in vitro and in vivo. However, CYB5R3 deficiency promotes tumorigenesis and metastasis in mouse models. Transcriptome analysis revealed that apoptosis- and endoplasmic reticulum (ER) stress-related genes are upregulated in CYB5R3-overexpressing lung cancer cells. Metabolomic analysis revealed that CYB5R3 overexpression increased the production of nicotinamide adenine dinucleotide (NAD+) and oxidized glutathione (GSSG). Ectopic CYB5R3 is mainly localized in the ER, where CYB5R3-dependent ER stress signaling is induced via activation of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme 1 alpha (IRE1α). Moreover, NAD+ activates poly (ADP-ribose) polymerase16 (PARP16), an ER-resident protein, to promote ADP-ribosylation of PERK and IRE1α and induce ER stress. In addition, CYB5R3 induces the generation of reactive oxygen species and caspase-9-dependent intrinsic cell death. Our findings highlight the importance of CYB5R3 as a tumor suppressor for the development of CYB5R3-based therapeutics for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis/genética , Citocromo-B(5) Reductasa/metabolismo , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212299

RESUMEN

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias del Colon/genética , Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Aging (Albany NY) ; 16(1): 43-65, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38206293

RESUMEN

Prostate cancer (PRAD) is one of the common malignant tumors of the urinary system. In order to predict the treatment results for PRAD patients, this study proposes to develop a risk profile based on endoplasmic reticulum stress (ERS). Based on the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort and the Gene Expression Omnibus database (GSE70769), we verified the predictive signature. Using a random survival forest analysis, prognostically significant ERS-related genes were found. An ERS-related risk score (ERscore) was created using multivariable Cox analysis. In addition, the biological functions, genetic mutations and immune landscape related to ERscore are also studied to reveal the underlying mechanisms related to ERS in PRAD. We further explored the ERscore-related mechanisms by profiling a single-cell RNA sequencing (scRNA-seq) dataset (GSE137829) and explored the oncogenic role of ASNS in PRAD through in vitro experiments. The risk signature composed of eight ERS-related genes constructed in this study is an independent prognostic factor and validated in the MSKCC and GSE70769 data sets. The scRNA-seq data additionally revealed that several carcinogenic pathways were noticeably overactivated in the group with high ERS scores. As one of the prognostic genes, ASNS will significantly inhibit the proliferation, migration and invasion abilities of PRAD cells after its expression is interfered with. In conclusion, this study developed a novel risk-specific ERS-based clinical treatment strategy for patients with PRAD.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Carcinogénesis , Carcinógenos , Estrés del Retículo Endoplásmico/genética , Pronóstico , Neoplasias de la Próstata/genética
18.
Appl Biochem Biotechnol ; 196(1): 182-202, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37103738

RESUMEN

The non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. It is usually diagnosed at an advanced stage with poor prognosis. Nimbolide (NB), a terpenoid limonoid isolated from the flowers and leaves of neem tree, possesses anticancer properties in various cancer cell lines. However, the underlying mechanism of its anticancer effect on human NSCLC cells remains unclear. In the present study, we investigated the effect of NB on A549 human NSCLC cells. We found that NB treatment inhibits A549 cells colony formation in a dose-dependent manner. Mechanistically, NB treatment increases cellular reactive oxygen species (ROS) level, leading to endoplasmic reticulum (ER) stress, DNA damage, and eventually induction of apoptosis in NSCLC cells. Furthermore, all these effects of NB were blocked by pretreatment with antioxidant glutathione (GSH), the specific ROS inhibitor. We further knockdown CHOP protein by siRNA markedly reduced NB-induced apoptosis in A549 cells. Taken together, our findings reveal that NB is an inducer of ER stress and ROS; these findings may contribute to increasing the therapeutic efficiency of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Limoninas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Limoninas/farmacología , Limoninas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Daño del ADN , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral
19.
Plant Biotechnol J ; 22(5): 1146-1163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38038125

RESUMEN

The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Nicotiana/genética , Hemaglutininas , Respuesta de Proteína Desplegada/genética , Estrés del Retículo Endoplásmico/genética
20.
Cancer Gene Ther ; 31(3): 376-386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086993

RESUMEN

Endoplasmic reticulum (ER) stress, prompted by the accumulation of misfolded or unfolded proteins, triggers the activation of the unfolded protein response (UPR) pathway to restore ER homeostasis. This stress response is implicated in the development of hepatocellular carcinoma (HCC). A biallelic mutation in SPRTN is currently the only known single-gene mutation implicated in the early onset of HCC. However, the exact mechanism linking SPRTN mutations to HCC remains unclear. In our study, we analyzed SPRTN and UPR in 21 human HCC tissue samples using RT-qPCR, immunoblot, and immunohistochemistry. We found alterations in the expression levels of SPRTN and UPR-related genes and proteins in HCC samples. The impact of SPRTN on the ER stress response was assessed in SPRTN-depleted HepG2 cells through RNA sequencing, pull-down assay, comet assay, and mitotic index calculation. We demonstrated that SPRTN interacts with the UPR sensor GRP78. Furthermore, we observed a decrease in SPRTN levels during ER stress, and increased sensitivity to ER stress in SPRTN-depleted cells. These findings suggest an essential role for SPRTN in the ER stress response and provide new insights into HCC pathogenesis. This newly discovered function of SPRTN could significantly enhance our understanding and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Neoplasias Hepáticas/patología , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA